
Tips
& Tricks

TDbGrid Columns
There is an “unexpected feature” you may come across
when using the Columns property of the Delphi 2 TDbGrid
component. Set a column button style other than
cbsNone and try to scroll horizontally, for example to
the left, while in edit mode. If the column to the left has
a width larger than the form’s width, you won’t see the
correct field contents, but will continue to see the value
of the column with the button.

To fix this behaviour, I suggest you derive a new
component from TDbGrid to hide the editor before
scrolling horizontally. This can be achieved by
responding to the WM_HSCROLL message like this:

procedure TScrollDBGrid.WMHScroll(
 var Msg: TWMHScroll);
begin
 HideEditor;
 Inherited;
end;

Contributed by Roberto De Marini, email:
rdemari@mbox.vol.it

FreeObject Instead Of Free
The procedure in Listing 1 frees an object and, what’s
more to the point, set its pointer to nil. The parameter
q is needed only for type-checking by the compiler. The
procedure is called like this, for example:

FreeObject(MyObject,MyObject);

Delphi is smart enough to call the appropriate Destroy
(which is called by Free implicitly).

Contributed by Reinhard Greeven, Frankfurt,
Germany, CompuServe 100544,2773

procedure FreeObject(var o;q:TObject);
var p : TObject absolute o;
begin
 { check if both parameters point to same instance }
 if p<>q then
 raise exception.Create(
 ’"FreeObject":different params’);
 { free }
 p.free;
 { set pointer to nil }
 p:=nil;
end;

➤ Listing 1

Property Read/Write Fields
It is a little known “secret” that you can use fields of
records and even array elements as property
read/write fields:

type
 TMyRecord
 Field1: longint;
 Field2: string;
 end;
 TMyClass = class
 private
 FRec : TMyRecord;
 public
 property Prop1: longint
 read FRec.Field1 write FRec.Field1;
 property Prop2: string
 read FRec.Field2 write FRec.Field2;
 end;

Contributed by Hallvard Vassbotn, email:
hallvard@falcon.no

Bug In Delphi 2 ComboBox
There is a bug in the write access methods of the
SelStart and SelLength properties of the TComboBox com-
ponent in Delphi 2. These properties are meant to set
and return the start and length of the selection within
the edit box of the ComboBox. No matter what you set
these properties to, the selection will start in position
0. The reason for this erroneous behaviour seems to be
a bug in the TCustomComboBox.SetSelStart and TCustom-
ComboBox.SetSelLength methods in \DELPHI20\
SOURCE\VCL\STDCTRLS.PAS, for those that have the
VCL source. I will not repeat the code here, but they
send a CB_SETEDITSEL message to the control with
wrong parameters in wParam and lParam. According to
my Win32 help file, the correct parameters are:

CB_SETEDITSEL (Win32)
wParam = 0; /* not used, must be zero */
/* start and end pos */
lParam = MAKELPARAM((ichStart), (ichEnd);
An application sends a CB_SETEDITSEL message to
select characters in the edit control of a combo
box.

With this information, we can fix the problematic meth-
ods. You could include these corrections directly in
STDCTRLS.PAS, but a cleaner approach is to inherit
from the buggy TComboBox and do a static override of the
SelStart and SelLength properties. This new combobox
can then be installed into the component palette.

Listing 2 shows the new component and Listing 3
shows a form unit which tests the bug and the fix.
Thanks to Harald Habberstad (haraldha@sn.no) for
noticing this bug.

Contributed by Hallvard Vassbotn, email: hall-
vard@falcon.no

56 The Delphi Magazine Issue 18

Delphi 2 For Loop Bug
Delphi 2.0 doesn’t seem to be able to handle some for
loops correctly. Look at the following code, for
example:

var D, N: Integer;
begin
 D := -5;
 for N := 1 downto D do
 Writeln (N);
 Readln;
end;

What should happen is very simple: it does a for loop
and displays all values of N. But it instead of counting
from 1 down to -5, it counts from 1 to -3! If you single-
step the loop, you can see it jump out of the loop for no

apparent reason! If you run the same code on Delphi 1
it works fine. The bug can surface with the optimizer
on and off.

I looked at the assembly generated from some simple
variations. To explain what the compiler does wrong,
its best to look at some correct code first. If we modify
the original example to:
for N := 2 downto D do

the compiler generates (optimized version) the code
shown in Listing 4.

The loop works by keeping an internal counter in EBX
that starts out as a negative number and is then in-
creased at the end of the loop. The loop starts over
again as long as EBX does not reach zero. Note that EBX
is adjusted to the starting index boundary (the sub ebx,
00000002 in the listing) and is decreased once more (to
include zero in the loop). This code works as expected
and loops from 2 to -5.

Now to the buggy variant where the loop looks like:
for N := 2 downto D do

The assembly now looks like Listing 5.

unit TestCBF;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls;
type
 TForm1 = class(TForm)
 { Simply drop these components on the form and
 keep all default properties }
 Button1: TButton;
 ComboBox1: TComboBox;
 Label1: TLabel;
 Button2: TButton;
 { Add click-event handlers for the buttons and a
 create handler for the form }
 procedure Button1Click(Sender: TObject);
 procedure Button2Click(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private
 public
 end;
var Form1: TForm1;

implementation
uses ComboFx;
{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
{ Try the buggy TComboBox properties. This should
 select and copy ’345’ to the label. Instead the
 result is ’012’ }
begin
 ComboBox1.SelStart := 3;
 ComboBox1.SelLength := 3;
 Label1.Caption := ComboBox1.SelText;
end;

procedure TForm1.Button2Click(Sender: TObject);
{ Test the fixed combobox by doing a simple
 type-cast. This correctly results in ’345’ being
 selected and copied. }
begin
 TComboBoxFix(ComboBox1).SelStart := 3;
 TComboBoxFix(ComboBox1).SelLength := 3;
 Label1.Caption := ComboBox1.SelText;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 { Set the combobox up with some known text }
 ComboBox1.Text := ’0123456789’;
end;

end.

➤ Listing 3

unit ComboFx;
interface
uses StdCtrls;
type
 TComboBoxFix = class(TComboBox)
 private
 function GetSelLength: Integer;
 function GetSelStart: Integer;
 procedure SetSelLength(Value: Integer);
 procedure SetSelStart(Value: Integer);
 public
 property SelLength: Integer
 read GetSelLength write SetSelLength;
 property SelStart: Integer
 read GetSelStart write SetSelStart;
 end;
procedure Register;

implementation
uses Messages, Windows, SysUtils, LibConst, Classes;
type
 TWordSelection = packed record
 StartPos: word;
 EndPos : word;
 end;

function TComboBoxFix.GetSelLength: Integer;
begin
 Result := inherited SelLength;
end;

function TComboBoxFix.GetSelStart: Integer;
begin
 Result := inherited SelStart;
end;

procedure TComboBoxFix.SetSelStart(Value: Integer);
var Selection: TWordSelection;
begin
 Selection.StartPos := Value;
 Selection.EndPos := Selection.StartPos + SelLength;
 SendMessage(Handle, CB_SETEDITSEL, 0,
 Longint(Selection));
end;

procedure TComboBoxFix.SetSelLength(Value: Integer);
var Selection: TWordSelection;
begin
 Selection.StartPos := SelStart;
 Selection.EndPos := Selection.StartPos + Value;
 SendMessage(Handle, CB_SETEDITSEL, 0,
 Longint(Selection));
end;

procedure Register;
begin
 RegisterComponents(LoadStr(srStandard),
 [TComboBoxFix]);
end;

end.

➤ Listing 2

58 The Delphi Magazine Issue 18

Basically this is the same code, but it misses the sub
ebx, 00000001 and the dec ebx before the loop. This
means that the loop will run two times fewer than
intended. This code will run through 1 to -3 instead of
from 1 to -5. If you change D := -5 to some other
negative number, it will still run two times too few.

Note that the same bug appears when optimization
is turned off. The code is different but the underlying
technique (and bug) is the same.

Contributed by Hallvard Vassbotn, email:
hallvard@falcon.no

Generating The Date
To achieve the same effect as Bob Swart’s DateGen
utility (in the October 1996 issue) I’m using the modifi-
cation date of the application’s EXE file to display the
compilation date in my About box, as shownbelow. It’s
automatic and easy!

procedure TFmMain.mnAboutClick(Sender: TObject);
var AboutBox : TAboutBox;
 MyFileID : LongInt;
begin
 AboutBox := TAboutBox.Create(self);
 MyFileID :=
 FileOpen(Application.ExeName, fmOpenRead);
 FileDateToDateTime(FileGetDate(MyFileID));
 AboutBox.MyVersion.Text := DateTimeToStr(
 FileDateToDateTime(FileGetDate(MyFileID)));
 AboutBox.ShowModal;
 AboutBox.Free;
end;

Contributed by Thilo Bretschneider, email:
thilo@Promo.DE

Environment Variables
Those who have come to Delphi from a Borland Pascal
background will probably lament the lack of a GetEnvVar
function in Delphi (at least, I have!). Well, here comes
the answer. I have written a function to do the same.
The code is in Listing 6. It takes the name of the envi-
ronment variable to obtain as its only parameter, eg:

bug_for.11: D := -5;
:00405D62 B8FBFFFFFF mov eax,FFFFFFFB
bug_for.12: for N := 2 downto D do
:00405D67 8BD8 mov ebx,eax
; *** Notice this next line: ***
:00405D69 83EB02 sub ebx,00000002
:00405D6C 7F20 jg bug_for.14 (00405D8E)
; *** and this next one: ***
:00405D6E 4B dec ebx
:00405D6F BE02000000 mov esi,00000002
bug_for.13: Writeln (N);
:00405D74 8BD6 mov edx,esi
:00405D76 B804724000 mov eax,00407204
:00405D7B E81CCAFFFF call @Write0Long
:00405D80 E892DDFFFF call @WriteLn
:00405D85 E872C8FFFF call @_IOTest
:00405D8A 4E dec esi
bug_for.12: for N := 2 downto D do
:00405D8B 43 inc ebx ;<< Loop more?
; Then jump to start of loop
:00405D8C 75E6 jne bug_for.13 (00405D74)

➤ Listing 4

MyCommand := GetEnvVar(’COMSPEC’);
You can now use this for getting at all those juicy
environment variables, or even for implementing a new
function, say one that searches for a filename in all the
directories in the PATH, see the example in Listing 7.

Contributed by The African Chief, email
laa12@cc.keele.ac.uk

bug_for.11: D := -5;
:00405D62 B8FBFFFFFF mov eax,FFFFFFFB
bug_for.12: for N := 1 downto D do
:00405D67 8BD8 mov ebx,eax
:00405D69 85DB test ebx,ebx * Bug here *
:00405D6B 7D1F jnl bug_for.14 (00405D8C)
:00405D6D BE01000000 mov esi,00000001 * and here *
bug_for.13: Writeln (N);
:00405D72 8BD6 mov edx,esi
:00405D74 B804724000 mov eax,00407204
:00405D79 E81ECAFFFF call @Write0Long
:00405D7E E894DDFFFF call @WriteLn
:00405D83 E874C8FFFF call @_IOTest
:00405D88 4E dec esi
bug_for.12: for N := 1 downto D do
:00405D89 43 inc ebx
:00405D8A 75E6 jne bug_for.13 (00405D72)

➤ Listing 5

Function FileExistsOnPath(Const fName:String;
 Var aReturn:String):Boolean;
{ searches for filename FName in current directory or in
 directories in PATH. FName should NOT contain file path.
 Returns full pathname to file in aReturn, if found, eg:
 Var s1, s2:String;
 begin
 s1 := ’PROGMAN.EXE’
 If FileExistsOnPath(s1, s2) then {do something with s2}
 else MessageBox(0, ’Program Manager not Found’,
 ’Fatal Error’, 0);
 end; }
Begin
 {search current directory}
 If FileExists(fName) then begin
 aReturn := ExpandFileName(fName);
 Result := True;
 Exit;
 end;
 {else search path}
 aReturn := FileSearch(fName, GetEnvVar(’PATH’));
 Result := aReturn > ’’;
End {FileExistsOnPath};

➤ Listing 7

Function GetEnvVar(Const Env:String) : String;
{ return contents of environment variable Env, or an empty
 string if variable does not exist, eg:
 Var Command : String;
 begin
 Command := GetEnvVar(’COMSPEC’)+#0;
 WinExec(@Command[1], sw_Normal);
 end; }
var
 p2 : pchar;
 i : Word;
 s : String;
Begin
 Result := ’’;
 p2 := GetDOSEnvironment;
 while p2[0] <> #0 do begin
 s := StrPas(p2);
 if (Pos(UpperCase(Env), UpperCase(s)) = 1) then begin
 i := Pos(’=’, s);
 If i=0 then i := pos(#32, s);
 Delete(s,1,i);
 Result := s;
 Exit;
 end;
 while (p2[0] <> #0) do Inc(p2); { goto end of current }
 Inc(p2); { point to next }
 end;
End {GetEnvVar};

➤ Listing 6

60 The Delphi Magazine Issue 18

Selecting The Library
A while back I suggested keeping multiple .DCL library
files (or at least one test one) for all those components
you’re not sure you want to keep.

Listing 8 shows a speedier way of selecting a compo-
nent library: a simple program to list all the .DCL files
in the component library directory in a menu and allow
selection of a specific component library before start-
ing Delphi. This is an application programmer’s at-
tempt at low-level code and may not be the best
example in the world...

Contributed by Phil Alexander, CompuServe
100121,1001

program Dstart;
{$R *.res}
uses
 Classes, WinTypes, WinProcs, Messages, SysUtils;
var
 SearchRec : TSearchRec;
 PopupMenu : HMenu;
 Msg : TMSG;
 ReturnValue: integer;
 ret : integer;
 cpos : TPOINT;
 iptr : PChar;
 buf : array [0..255] of char;
 noch : integer;
 flags : word;
 i,x,y : integer;
 hHookedWnd : HWND;
 tmpstr : string;
 startdir : string;
 curDCL : string;
 files : TStringList;
 dStartClass: array [0..255] of char;

function NewMsgHandler(Window : HWnd; Message : Word;
 wParam : Word; lParam : LongInt) : LongInt; export;
begin
 case Message of
 wm_Command :
 begin
 case WParam of
 1..20: ReturnValue := WParam;
 end;
 end;
 end;
end;

function QuickWindow:HWND;
var
 wc : TWNDCLASS;
begin
 { Register the window class. }
 StrPCopy(dStartClass,’Delphi Start’);
 wc.style := 0;
 wc.lpfnWndProc := @NewMsgHandler;
 wc.cbClsExtra := 0;
 wc.cbWndExtra := 0;
 wc.hInstance := hInstance;
 wc.hIcon := 0;
 wc.hCursor := LoadCursor(0,IDC_ARROW);
 wc.hbrBackground := 0;
 wc.lpszMenuName := nil;
 wc.lpszClassName := dStartClass;
 if RegisterClass(wc) then
 QuickWindow := CreateWindow(dStartClass,
 ’Delphi Start’, WS_OVERLAPPED or WS_SYSMENU,
 CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, 0, 0,
 hInstance, nil);
end;

{ main program }
begin
 { record start dir, i.e. working directory of pm icon}
 getdir(0,StartDir);

 ReturnValue := 0;
 GetCursorPos(cpos);
 x := cpos.x;
 y := cpos.y;
 {create invisible window to receive messages}
 hHookedWnd := QuickWindow;
 i:=0;
 flags := 0;
 {load current component library setting,
 and get directory part of it by setting last \ to 0}
 ret := GetPrivateProfileString(’Library’,
 ’ComponentLibrary’, ’’, buf, 225, ’DELPHI.INI’);
 iptr := StrRScan(buf,’\’);
 iptr[0] := chr(0);
 tmpstr := StrPas(buf);
 iptr := iptr+1;
 curDCL := StrPas(iptr);
 files := TStringList.Create;
 PopupMenu := CreatePopupMenu;
 AppendMenu(PopupMenu,mf_disabled,0,buf);
 {Change directory to component library dir and list all
 files in the directory. For each file, add to menu
 and a string list - the latter for use later if a
 menu item is chosen}
 chdir(tmpstr);
 ret := FindFirst(’*.DCL’,faAnyFile , SearchRec);
 while ret = 0 do begin
 StrPCopy(buf,SearchRec.Name);
 files.add(SearchRec.Name);
 i:= i + 1;
 if SearchRec.Name = curDCL then
 flags := mf_checked
 else
 flags := 0;
 AppendMenu(PopupMenu,flags,i,buf);
 ret := FindNext(SearchRec);
 end;
 {..and display the menu}
 TrackPopupMenu(PopupMenu,0,x,y,0,hHookedWnd,nil);
 {Check for whether a menu selection was made}
 if PeekMessage(Msg,hHookedWnd,0,32767,PM_REMOVE) then
 DispatchMessage(Msg);
 {get rid of window created by QuickWindow}
 DestroyWindow(hHookedWnd);
 UnregisterClass(dStartClass,hInstance);
 {only process anything if return value > 0 i.e. a menu
 item has been chosen}
 if ReturnValue > 0 then begin
 getdir(0,tmpstr);
 tmpstr := tmpstr + ’\’ + files[ReturnValue - 1];
 StrPCopy(buf,tmpstr);
 WritePrivateProfileString(’Library’,
 ’ComponentLibrary’, buf, ’DELPHI.INI’);
 getdir(0,tmpstr);
 tmpstr := tmpstr + ’\DELPHI.EXE ’;
 StrPCopy(buf,tmpstr);
 StrCat(buf, cmdLine);
 chdir(StartDir);
 WinExec(buf,cmdShow);
 end;

end.

➤ Listing 8

Thanks for all your Tips,
keep them coming in!

If you have any hints that
you think will be of use to
fellow Delphi developers,
just drop them in an email

to the Editor at
70630.717@compuserve.com

62 The Delphi Magazine Issue 18

	TDbGrid Columns
	FreeObject Instead Of Free
	Property Read/Write Fields
	Bug In Delphi 2 ComboBox
	Delphi 2 For Loop Bug
	Generating The Date
	Environment Variables
	Selecting The Library

